一致性检查技术使我们能够评估某些表现出的行为,以一系列受监视的事件表示,符合指定的过程模型。现代监测和活动识别技术,例如依靠传感器,物联网,统计和AI的技术,可以产生大量相关的事件数据。但是,与符合检查算法所需的确定性事件对数的假设相反,该数据通常以噪声和不确定性为特征。在本文中,我们将基于对齐的一致性检查扩展到概率事件日志下的功能。我们介绍了一个概率痕量模型和对齐成本函数,以及一个自定义阈值参数,该参数控制事件数据与过程模型的信任水平。与传统比对相比,在存在足够高的可能性的对齐事件的情况下,所得算法得出的适应性得分提高,因此假阳性偏差较少。我们从形式和直观的角度来解释算法及其动机,并与使用一组理论示例相比,证明了其功能与确定性对齐相比。
translated by 谷歌翻译
图形预训练策略一直在图形挖掘社区吸引人们的注意力,因为它们在没有任何标签信息的情况下在参数化图形神经网络(GNN)方面的灵活性。关键思想在于通过预测从输入图中提取的掩蔽图信号来编码有价值的信息。为了平衡各种图形信号的重要性(例如节点,边缘,子图),现有方法主要是通过引入超参数来重新进行图形信号的重要性来进行手工设计的。然而,人类对亚最佳高参数的干预通常会注入额外的偏见,并在下游应用中降低了概括性能。本文从新的角度解决了这些局限性,即为预培训GNN提供课程。我们提出了一个名为Mentorgnn的端到端模型,该模型旨在监督具有不同结构和不同特征空间的图表的GNN的预训练过程。为了理解不同粒度的异质图信号,我们提出了一种课程学习范式,该课程自动重新贴出图形信号,以确保对目标域进行良好的概括。此外,我们通过在预先训练的GNN的概括误差上得出自然且可解释的上限,从而对关系数据(即图形)的域自适应问题(即图形)发出了新的启示。有关大量真实图的广泛实验验证并验证了Mentorgnn的性能。
translated by 谷歌翻译
我们提出了一种新的表结构识别方法(TSR)方法,称为TSRFormer,以稳健地识别来自各种表图像的几何变形的复杂表的结构。与以前的方法不同,我们将表分离线预测作为线回归问题,而不是图像分割问题,并提出了一种新的两阶段基于基于DETR的分离器预测方法,称为\ textbf {sep} arator \ textbf {re} re} tr} ansformer(sepretr),直接预测与表图像的分离线。为了使两阶段的DETR框架有效地有效地在分离线预测任务上工作,我们提出了两个改进:1)一种先前增强的匹配策略,以解决慢速收敛问题的detr; 2)直接来自高分辨率卷积特征图的样本特征的新的交叉注意模块,以便以低计算成本实现高定位精度。在分离线预测之后,使用简单的基于关系网络的单元格合并模块来恢复跨越单元。借助这些新技术,我们的TSRFormer在包括SCITSR,PubTabnet和WTW在内的多个基准数据集上实现了最先进的性能。此外,我们已经验证了使用复杂的结构,无边界的单元,大空间,空的或跨越的单元格以及在更具挑战性的现实世界内部数据集中扭曲甚至弯曲的形状的桌子的鲁棒性。
translated by 谷歌翻译
聚类是一项基本的机器学习任务,在文献中已广泛研究。经典聚类方法遵循以下假设:数据通过各种表示的学习技术表示为矢量化形式的特征。随着数据变得越来越复杂和复杂,浅(传统)聚类方法无法再处理高维数据类型。随着深度学习的巨大成功,尤其是深度无监督的学习,在过去的十年中,已经提出了许多具有深层建筑的代表性学习技术。最近,已经提出了深层聚类的概念,即共同优化表示的学习和聚类,因此引起了社区的日益关注。深度学习在聚类中的巨大成功,最基本的机器学习任务之一以及该方向的最新进展的巨大成功所激发。 - 艺术方法。我们总结了深度聚类的基本组成部分,并通过设计深度表示学习和聚类之间的交互方式对现有方法进行了分类。此外,该调查还提供了流行的基准数据集,评估指标和开源实现,以清楚地说明各种实验设置。最后但并非最不重要的一点是,我们讨论了深度聚类的实际应用,并提出了应有的挑战性主题,应将进一步的研究作为未来的方向。
translated by 谷歌翻译
从磁共振成像(MRI)中进行精确的脑肿瘤分割,对于多模式图像的联合学习是可取的。但是,在临床实践中,并非总是有可能获得一组完整的MRI,而缺失模态的问题会导致现有的多模式分割方法中的严重性能降解。在这项工作中,我们提出了第一次尝试利用变压器进行多模式脑肿瘤分割的尝试,该脑肿瘤分割对任何可用模式的任何组合子集都是可靠的。具体而言,我们提出了一种新型的多模式医疗变压器(MMMFORMER),用于不完整的多模式学习,具有三个主要成分:混合模态特异性的编码器,该编码器在每种模式中桥接卷积编码器和一个局部和全局上下文模型的模式内变压器;一种模式间变压器,用于建立和对齐模态跨模态的远程相关性,以对应于肿瘤区域的全局语义。一个解码器,与模态不变特征进行渐进的上采样和融合,以生成可靠的分割。此外,在编码器和解码器中都引入了辅助正规化器,以进一步增强模型对不完整方式的鲁棒性。我们对公共批评的大量实验$ 2018 $ $数据集用于脑肿瘤细分。结果表明,所提出的MMFORMER优于几乎所有不完整模态的亚群的多模式脑肿瘤分割的最新方法,尤其是在肿瘤分割的平均骰子中平均提高了19.07%,只有一种可用的模式。该代码可在https://github.com/yaozhang93/mmmenforer上找到。
translated by 谷歌翻译
基于现有的基于解除拘淀的概括性的方法,即可在直接解开人称的旨在转变为域相关干扰和身份相关特征。然而,它们忽略了一些重要的特征在域相关干扰和身份相关特征中顽固地纠缠于,这是难以以无监督的方式分解的。在本文中,我们提出了一种简单但有效的校准功能分解(CFD)模块,专注于通过更明智的特征分解和强化策略来提高人员重新识别的泛化能力。具体地,校准和标准化的批量归一化(CSBN)旨在通过联合探索域内校准和域间标准化的多源域特征来学习校准的人表示。 CSBN限制每个域的特征分布的实例级别不一致,捕获内部域级别的特定统计信息。校准人称表示在细微分解为身份相关功能,域功能,剩余纠结的纠结之一。为了提高泛化能力并确保高度辨别身份相关特征,引入了校准的实例归一化(CIN)以强制执行判别ID相关信息,并滤除ID-Intrelate的信息,同时剩余的富互补线索纠缠特征进一步用于加强它。广泛的实验表明了我们框架的强烈概括能力。我们的模型由CFD模块赋予授权,显着优于多个广泛使用的基准测试的最先进的域广义方法。代码将公开:https://github.com/zkcys001/cfd。
translated by 谷歌翻译
无监督的异常检测和定位对于采集和标记足够的异常数据时对实际应用至关重要。基于现有的基于表示的方法提取具有深度卷积神经网络的正常图像特征,并通过非参数分布估计方法表征相应的分布。通过测量测试图像的特征与估计分布之间的距离来计算异常分数。然而,当前方法无法将图像特征与易解基本分布有效地映射到局部和全局特征之间的关系,这些功能与识别异常很重要。为此,我们提出了使用2D标准化流动实现的FastFlow,并将其用作概率分布估计器。我们的FastFlow可用作具有任意深度特征提取器的插入式模块,如Reset和Vision变压器,用于无监督的异常检测和定位。在训练阶段,FastFlow学习将输入视觉特征转换为贸易分布并获得识别推理阶段中的异常的可能性。 MVTEC AD数据集的广泛实验结果显示,在具有各种骨干网络的准确性和推理效率方面,FastFlow在先前的最先进的方法上超越了先前的方法。我们的方法通过高推理效率达到异常检测中的99.4%AUC。
translated by 谷歌翻译
随着社交网络的发展,用于各种商业和政治目的的虚假新闻已经大量出现,并在在线世界中广泛存在。有了欺骗性的话,人们可以很容易地被假新闻感染,并会在没有任何事实检查的情况下分享它们。例如,在2016年美国总统选举期间,有关候选人的各种虚假新闻在官方新闻媒体和在线社交网络中都广泛传播。这些假新闻通常会发布以涂抹对手或支持候选人的身边。假新闻中的错误信息通常是为了激励选民的非理性情感和热情。这样的虚假新闻有时会带来毁灭性的影响,改善在线社交网络的信誉的一个重要目标是及时确定假新闻。在本文中,我们建议研究假新闻检测问题。自动假新闻标识非常困难,因为新闻的基于纯模型的事实检查仍然是一个开放问题,并且很少使用现有模型来解决该问题。通过对虚假新闻数据进行彻底的调查,从假新闻中使用的文本单词和图像都可以确定许多有用的明确功能。除了明确的功能外,假新闻中使用的单词和图像中还存在一些隐藏的模式,可以用我们模型中的多个卷积层提取的一组潜在特征来捕获。本文提出了一种称为Ti-CNN的模型(基于文本和图像信息的综合神经网络)。通过将显式和潜在功能投射到统一的特征空间中,Ti-CNN可以同时培训文本和图像信息。在现实世界中的假新闻数据集进行的广泛实验证明了Ti-CNN的有效性。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译